If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x-57=0
a = 1; b = 18; c = -57;
Δ = b2-4ac
Δ = 182-4·1·(-57)
Δ = 552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{552}=\sqrt{4*138}=\sqrt{4}*\sqrt{138}=2\sqrt{138}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{138}}{2*1}=\frac{-18-2\sqrt{138}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{138}}{2*1}=\frac{-18+2\sqrt{138}}{2} $
| 25.9=15t-5t^2 | | -8x+4=26x+4 | | 50+(x+15)=90 | | 50(x+15)=90 | | 9x+10(-2x+3)=-10x | | 510/x=85510/x=85 | | x/7=156 | | 510/x=85 | | -10=2(2x-2)-3 | | 3x+2x+9=24 | | 3p+2=46 | | 374/x=-12 | | 374/x=22 | | -3(-3x+4)-2=-(x+2) | | X-(.96x)=20 | | 8p^+13p+5=0 | | 2x2-6x-40=0 | | -7x+-7=-14 | | 5/y-2=15/2 | | X+13+x+20=180 | | 4x^{2}+20x+15=0 | | 13x-12=5x+75 | | 6x-8=7x+18 | | -7(t+10)=-6t | | b²+4b-45=0 | | y^2+2=-34 | | b²+4b-4b=0 | | 20-9w=4(-w+15) | | 5s+25=5s+8 | | 2h-8h+1=9-10h | | -7-2.5h=19-4h | | 15(20-4.9x^2)=0 |